

Welcome to django-envy’s documentation!

Django-envy is an opinionated environment variable parser, with a focus on strictness, and doing a single thing well. Can be used standalone or with Django.

	Motivation
	.env Files Are Not Environment Variables

	Don’t Duplicate Packages

	Strictness And Correctnes Above Convenience

	Alternatives

	Usage
	Creating an Environment

	Reading Environment Variables

	Providing Defaults

	Casting

	Convenience Methods

	Using With Other Django Settings Packages

	API
	Exceptions

Indices and tables

	Index

	Module Index

	Search Page

Motivation

With the 12-factor app gaining popularity, and an increased focus on devops, there’s already quite a few packages out there which can read and parse environment variables. However, django-envy makes a series of design decisions that I feel are important.

In the following, I will go over each decision in turn, and lay out the reasoning for it.

.env Files Are Not Environment Variables

The 12-factor app “manifesto” is very clear on favoring environment variables over language or OS specific config files for configuration, for a number of very good reasons.

While it’s possible to interpret these reasons and conclusions in different ways, django-envy takes a very opinionated stand: The application should know absolutely nothing about where environment variables come from.

There are dozens of ways to set an environment variable so that it will be available to your application:

	Globally on startup for the entire instance

	For a specific user

	In your process manager, whether that be startup, runit, supervisor, system.d, god, monit, or something entirely different

	Using a wrapper script

	Built into your docker image

	When starting your docker image

	From a series of files using envdir

	Sourcing a bash script

	Etc.

All of these are acceptable options, and each have their pros and cons. With so many ways to set environment variables, there’s no reason for the application to be able to set them too.

If you need to set environment variables in development, consider something like foreman or honcho, or the built in facilities for doing so in docker, if that’s what you use.

Don’t Duplicate Packages

There are a number of well-maintained packages to take care of Django-specific settings, such as database, cache or email settings:

	dj-database-url

	dj-email-url

	django-cache-url

However much the naming inconsistency annoys me, I don’t see a good reason to duplicate the functionality of these packages, for the sake of fewer dependencies.

For an example of how to use any of these packages with django-envy, please see …

Strictness And Correctnes Above Convenience

Configuration is important, and getting a vital piece of information wrong can be devastating. That’s why django-envy takes a firm stance on what values are allowed when casting between types, and will always prefer raising an error to trying to be clever.

Examples:

	There is only two acceptable values when casting to boolean: "true" and "false" (they are case insensitive though)

	Floats must always be specified using a period (.) as the decimal separator. There is no logic for “guessing” the thousand separator. (Though it is possible to use _ for readability as in Python 3.6)

	If a cast does not seem to make sense, django-envy will throw an error. This includes trying to cast to nested collections.

Alternatives

If these design decisions aren’t to your liking, there are other packages out there, which have chosen a different set of tradeoffs:

	django-environ

	envparse

	python-decouple

	django12factor

	django-confy

	json_environ

Usage

Creating an Environment

Reading Environment Variables

Providing Defaults

Casting

Simple Types

Collections

Custom Types

Casting of the Default Value

Convenience Methods

Using With Other Django Settings Packages

API

	
class envy.Environment(environ)

	Class for reading and casting environment variables

This class presents the main interface for interacting with the
environment. Once instantiated, it can either be called as a function,
or any of the convenience methods can be used.

	Parameters

	environ (dict) – Environment to read variables from

	
__call__(var, default=<class 'envy.NoValue'>, cast=None, force=True)

	Function interface

Once the environment has been initialised, it can be called as a
function. This is necessary to provide custom casting, or it can
sometimes be preferred for consistency.

Examples

Casting an environment variable:

>>> env = Environment({'MY_VAR': '1'})
>>> env('MY_VAR', cast=int)
1

Providing a default:

>>> env = Environment({})
>>> env('ANOTHER_VAR', default='value')
"value"

	Parameters

	
	var (str) – The name of the environment variable

	default – The value to return if the environment variable does not
exist

	cast – type or function for casting environment variable. See
casting

	force (bool) – Whether to force casting of the default value

	Returns

	The environment variable if it exists, otherwise default

	Raises

	ImproperlyConfigured

	
__contains__(var)

	Test if an environment variable exists

Allows using the in operator to test if an environment variable
exists.

Examples

>>> env = Environment({'MY_VAR': '1'})
>>> 'MY_VAR' in env
True
>>> 'ANOTHER_VAR' in env
False

	
__init__(environ)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
bool(var, default=<class 'envy.NoValue'>, force=True)

	Convenience method for casting to a bool

	
decimal(var, default=<class 'envy.NoValue'>, force=True)

	Convenience method for casting to a decimal.Decimal

Note

Casting

	
dict(var, default=<class 'envy.NoValue'>, cast=None, force=True)

	Convenience method for casting to a dict

Note

Casting

	
float(var, default=<class 'envy.NoValue'>, force=True)

	Convenience method for casting to a float

	
int(var, default=<class 'envy.NoValue'>, force=True)

	Convenience method for casting to an int

	
json(var, default=<class 'envy.NoValue'>, force=True)

	Get environment variable, parsed as a json string

	
list(var, default=<class 'envy.NoValue'>, cast=None, force=True)

	Convenience method for casting to a list

Note

Casting

	
set(var, default=<class 'envy.NoValue'>, cast=None, force=True)

	Convenience method for casting to a set

Note

Casting

	
str(var, default=<class 'envy.NoValue'>, force=True)

	Convenience method for casting to a str

	
tuple(var, default=<class 'envy.NoValue'>, cast=None, force=True)

	Convenience method for casting to a tuple

Note

Casting

	
url(var, default=<class 'envy.NoValue'>, force=True)

	Get environment variable, parsed with urlparse/urllib.parse

Exceptions

	
class envy.ImproperlyConfigured

	Configuration Exception

Imported from Django if available, otherwise defined as
a simple subclass of Exception

Index

 _
 | B
 | D
 | E
 | F
 | I
 | J
 | L
 | S
 | T
 | U

_

 	
 	__call__() (envy.Environment method)

 	
 	__contains__() (envy.Environment method)

 	__init__() (envy.Environment method)

B

 	
 	bool() (envy.Environment method)

D

 	
 	decimal() (envy.Environment method)

 	
 	dict() (envy.Environment method)

E

 	
 	Environment (class in envy)

F

 	
 	float() (envy.Environment method)

I

 	
 	ImproperlyConfigured (class in envy)

 	
 	int() (envy.Environment method)

J

 	
 	json() (envy.Environment method)

L

 	
 	list() (envy.Environment method)

S

 	
 	set() (envy.Environment method)

 	
 	str() (envy.Environment method)

T

 	
 	tuple() (envy.Environment method)

U

 	
 	url() (envy.Environment method)

 nav.xhtml

 Table of Contents

 		
 Welcome to django-envy’s documentation!

 		
 Motivation

 		
 .env Files Are Not Environment Variables

 		
 Don’t Duplicate Packages

 		
 Strictness And Correctnes Above Convenience

 		
 Alternatives

 		
 Usage

 		
 Creating an Environment

 		
 Reading Environment Variables

 		
 Providing Defaults

 		
 Casting

 		
 Simple Types

 		
 Collections

 		
 Custom Types

 		
 Casting of the Default Value

 		
 Convenience Methods

 		
 Using With Other Django Settings Packages

 		
 API

 		
 Exceptions

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

